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ABSTRACT

We present an efficient implementation of a state of the art

algorithm PixelMatch for matching all pixels within con-

secutive video frames. The method is of practical interest

for tracking movements in video; it is also related to block-

matching in standard video compression methods.

From the source specification of PixelMatch, a limited

number of high-level code transformations are first performed,

and analyzed, to produce an intermediate executable soft-

ware code.

From the intermediate software code, an efficient recon-

figurable hardware circuit is synthesized, in a fully auto-

matic manner, to process Standard Definition video streams

in real-time on a current mid-size FPGA. The software im-

plementation compiled from the same code runs orders of

magnitude faster than the original specification. Despite

this, real-time software processing of video streams by Pix-

elMatch is still only within reach of the highest-end work-

stations.

1. INTRODUCTION

PixelMatch estimates the motion of every pixel within two

consecutive W × H images I1 and I2 in a video stream.

For each position in I1, a corresponding neighborhood is

explored in I2, to find the pixel in image I2 with the highest

correlation to the original pixel in image I1. The movement

between the original pixel and its best match in I2 is duly

recorded in the output image. The image correlation used is

the Sum of Absolute Differences (SAD) between each pixel

value in I1 and in I2, summed over a square neighborhood

around each reference pixel.

So the original specification for PixelMatch embeds three

finite search loops. An optimal ordering of the search scan

through both images is derived by analyzing the internal op-

erations, memory and bandwidth required for each ordering.

The final real time hardware circuit is obtained from a min-

imal logic solution, by appropriately unfolding it in space.

The paper is organized as follows. Section 2 presents the

matching problem in mathematical terms and optimally or-

ders the search loops. Based on these premises, section 3

explores the various logic/memory tradeoffs available for

simplifying the SAD computation loop. Section 4 describes

an optimized tradeoff for the Virtex II hardware and how it

can be suitably folded in time/space. Section 5 describes an

optimized software implementation.

2. PROBLEM DESCRIPTION

2.1. Basic formulae

Consider two W ×H images I1 and I2, usually consecutive

images in a video stream. The aim is to estimate the motion

of every pixel from I1 to I2: given a pixel in I1 we want to

find its matching pixel in I2.

In order to quantify the similarity E~d
of position p0 in I1

and position p0 + ~d in I2 we use a classical sum of absolute

differences (SAD) of regions around the two positions; this

is the first of our nested loops, the integration loop:

E~d
(p0 ) =

∑

|~δ |6β

|I1 (p0 + ~δ )− I2 (p0 + ~d + ~δ )|
(1)

The sum is taken over a square region the radius β of

which is a parameter for PixelMatch.

Given a position p0 in I1 we look for the minimum cor-

relation for a limited range of displacements. This minimum

points to the matching position in I2 and the associated mo-

tion vector; this is the second search loop:

E~d opt
(p0 ) = min

|~d |6α

E~d
(p0 ) (2a)

~d opt (p0 ) = arg min
|~d |6α

E~d
(p0 ) (2b)

Minimization is done over a square region the radius α
of which is the second parameter for PixelMatch. It is usu-

ally chosen so that α 6 β in order to prevent erroneous

matches.



Contrary to usual block-matching for video compres-

sion [1], the motion vector and associated minimum correla-

tion is computed for every position in I1. Running over all

positions is the last of our search loops; for SD images this

loop must iterate about 12, 000, 000 times per second. Thus

a naive implementation of the algorithm is:

input : I1 and I2 of size W ×H
output: map of motion vectors and correlations

InitOptimum ;

forall |~d | 6 α do1

foreach p ∈ I1 do2

E~d
← 0;

forall |δ| 6 β do3

E~d
+= E~d

(p + δ);

UpdateOptimum(p , ~d , E~d
);

Algorithm 1: Raw block matching

input: p , ~d , E~d
(p )

data : ~d opt map of current best motion vectors

data : E~d opt
map of current best correlations

if E~d
(p ) 6 E~d opt

(p ) then

~d opt (p )← ~d ;

E~d opt
(p )← E~d

(p );

Algorithm 2: UpdateOptimum routine

2.2. Ancillary definitions

The translation T~d
of the image I2 by the motion vector ~d

is:

I2 ◦ T~d
(p) = I2 (p + ~d ) (3)

The energy function E~d
at position p, for displacement

~d is:

E~d
(p) = |I1 (p)− I2 ◦ T~d

(p)| (4)

We wish to decompose the computation into vertical strips.

The vertical correlation Ev
~d

at position p, for displacement

~d is:

Ev
~d

(p) =
∑

δ∈{0}×[−β,β]

E~d
(p + δ ) (5)

2.3. Efficient SAD computation

There are many common subexpressions between instances

of formula (1) when looping over positions p for a fixed

displacement ~d .
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Fig. 1. Subexpression sharing in correlation computation

Consider figure 1; the SAD on the region surrounding

position (x, y) can be computed from the sum around posi-

tion (x− 1, y) by subtracting the sum over the vertical strip

leaving the integration square and adding the sum over the

vertical strip entering it. This is written as formula 6.

E~d
(x, y) = E~d

(x− 1, y)− Ev
~d

(x− β − 1, y)

+ Ev
~d

(x + β, y)
(6)

The vertical strip correlation Ev
~d

(x + β, y) itself can be

computed with minimal overhead from the vertical correla-

tion value of the position above, by adding the energy in-

coming into the strip, and subtracting the energy at the posi-

tion leaving the strip:

Ev
~d

(x + β,y) = Ev
~d

(x + β, y − 1)

− E~d
(x + β, y − β − 1) + E~d

(x + β, y + β)

(7)

We use these equations to avoid redundant computation

across the image by storing some intermediate results E~d
,

Ev
~d

, E~d
: we trade computation for memory. Thus the bulk

of the computation of formula (1) is eliminated.

The innermost loop of algorithm 1 is replaced with a call

to an incremental correlation computation function. The

IncrCorrelation function has internal static memory

for storing the intermediate results needed to compute the

correlation function incrementally from one pixel to the next,

in raster-scan order.

The algorithm may now be re-expressed as:



input : I1 and I2 of size W ×H
output: map of motion vectors and correlations

InitOptimum ;

forall |~d | 6 α do1

E~d
← 0;

foreach p ∈ I1 do2

E~d
← IncrCorrelation

(

E~d
, I1, I2

)

;

UpdateOptimum
(

p , ~d , E~d

)

;

Algorithm 3: Computationally-efficient block matching

2.4. Efficient minimum correlation computation

Algorithm 3 makes one pass over the images for each value

of ~d , updating in the UpdateOptimum routine the ~d opt

and E~d opt
maps.

Storage space is needed for maintaining these maps. Band-

width is consumed as we must read and possibly update

them for each newly-computed correlation value.

Data locality is better exploited if we compute the E~d

values at the same position across all ~d in a tight loop. In

a single visit to the position, all the data needed to make

the optimum decision is computed. This is just a matter of

inverting loop 1 and 2 in algorithm 3 so that the computation

for formula (2a) is now innermost:

input : I1 and I2 of size W ×H
output: map of motion vectors and correlations

foreach p ∈ I1 do1

E~d opt
← maxint;

forall |~d | 6 α do2

E~d
← IncrCorrelation ~d

(

E~d
, I1, I2

)

;

if E~d
6 E~d opt

then

~d opt ← ~d ;

E~d opt
← E~d

;

Write(p , E~d opt
, ~d opt );

Algorithm 4: Bandwidth-efficient block matching

Now E~d opt
and ~d opt are merely stack variables. How-

ever IncrCorrelation’s internal memory must be du-

plicated (2α + 1)2 times to accommodate the parallel com-

putations of correlations.

3. INCREMENTAL CORRELATION

COMPUTATION

Function IncrCorrelation, the incremental correlation

computation function, is at the heart of algorithm 4. In

this section we explore the various memory/logic or mem-

ory/instruction count tradeoffs available for this function.
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3.1. Minimal logic

We use (6) and (7) above that yield:

E~d
(x− β, y − β) = E~d

(x− β − 1, y − β)

− Ev
~d

(x− 2β − 1, y − β) + Ev
~d

(x, y − β − 1)

− E~d
(x, y − 2β − 1)

+ |I1 (x, y)− I2 ◦ T~d
(x, y)|

(8)

E~d
can be computed incrementally with as little logic as

one adder, two subtracters and one absolute value. The cost

for this computation reduction is that the values for E~d
, Ev

~d

and E~d
have to be memoized 1 in sliding windows.

The circuit of figure 2 embodies this computation. It

takes pixels in raster-scan order and outputs the E~d
values

in-order. The memory requirements are shown in table 1.

The E~d
shift-register is huge: this is one of the main draw-

backs of this circuit.

3.2. Duplication of the energy computation

The amount of static memory in the IncrCorrelation

block can be reduced by not memoizing the E~d
term, re-

computing it instead with data fetched from I1 and I2, ac-

cording to the following formula:

E~d
(x− β, y − β) = E~d

(x− β − 1, y − β)

− Ev
~d

(x− 2β − 1, y − β) + Ev
~d

(x, y − β − 1)

− |I1 (x, y − 2β − 1)− I2 ◦ T~d
(x, y − 2β − 1)|

+ |I1 (x, y)− I2 ◦ T~d
(x, y)|

(9)

1http://wikipedia.org/wiki/Memoization
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Fig. 3. Correlation computation of subsection 3.2

This design trades the memory in the E~d
buffer for some

redundant computation and an increased bandwidth to I1

and I2.

The circuit of figure 3 embodies this computation. The

memory requirements for this module are greatly decreased,

as shown in table 1 – we dispose of the E~d
shift-register.

3.3. Duplication of the vertical sum computation

We can further lower the memory requirements of the mod-

ule by not to memoizing the farthest Ev
~d

term, Ev
~d

(x, y −

β − 1) of formula (9). Therefore we have to recompute it

with data fetched from I1 and I2, according to the following

formula:

E~d
(x− β, y − β) = E~d

(x− β − 1, y − β)

− Ev
~d

(x− 2β − 1, y − β)

+
∑

06dy62β

|I1 (x, y − dy)− I2 ◦ T~d
(x, y − dy)|

(10)

This design eliminates a large part of the Ev
~d

shift-register

– the internal memory of IncrCorrelation has been

made independent of the image width W .

This memory was traded for a considerable increase in

logic, bandwidth and wiring complexity. Indeed, the circuit

now contains a SAD tree over (2α + 1) elements and has to

fetch (2β + 1) values from each image (figure 4).
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4. HARDWARE IMPLEMENTATION

4.1. Implementation parameters

The goal for the circuit is to be able to process in real-

time Standard Definition video streams. Standard Definition

video streams can be PAL or NTSC. The bandwidth for both

standards is practically the same, and we chose to settle for

PAL numbers.

We treat standard PAL images in 720×576 format, with

a framerate of 25 images/sec. Algorithmic parameters β and

α are both set to 5. So the search and integration square area

are 121 pixels, the throughput is 10, 368, 000 motion vectors

per second selected among 1, 254, 528, 000 correlations.

Our prototyping platform is the Sepia phase 3 board from

HP’s Sepia project [2]. This PCI board contains a Virtex

II XC2V2000 for the realization of application specific cir-

cuits.

4.2. Logic/memory tradeoff

In section 3 we considered one instance of the subroutine

IncrCorrelation~d
which takes as input data from the

images and computes the correlation value at each pixel for

a given displacement ~d .

Section 2.4 showed that we need to instantiate (2α+1)2

times this module in order to compute the motion vectors

with as little logic, memory and bandwidth as possible.

Memory usage puts a hard constraint on our design: we

have to duplicate (2α + 1)2 times the internal memory of

IncrCorrelation. The circuit of section 3.3 is the only

circuit which allows this on our Virtex II platform.



Minimum logic Intermediate logic Minimum memory

E~d
SR (n + 2 log2(2β + 1))× 1

Ev
~d

SR (n + log2(2β + 1))×W (n + log2(2β + 1))× (2β + 1)

E~d
SR n×W.(2β + 1) 0

Memory 76,047 b 8,463 b 1,346 b

Logic 66 LUTs 83 LUTs 148 LUTs

Table 1. Memory and logic requirements of various versions of IncrCorrelation

2α + 1

pixels values being accessed

I2

(x, y)

I1

2
β

+
1

2
β

+
2
α

+
1

(x, y − 2β)

(x + α, y + α)

(x− α, y − 2β − α)

Fig. 5. Access to I1 and I2 data for computing the (2α+1)2

correlations at position (x− β, y − β)

We also put on the FPGA the I1 and I2 shift-registers

used for buffering the data needed for feeding the module in-

stances. The increase in bandwidth from I1 and I2 is limited

as many data accesses from the (2α + 1)2 modules overlap,

yielding the memory access pattern of figure 5.

4.3. Logic folding

The circuit which fully unrolls the module of section 3.3

(2α+1)2 times accepts one pixel from each image and out-

puts one motion vector per clock cycle.

The design is mainly feed-forward. Automatic retim-

ing [3] yields very high clock speeds, around 200MHz on

the Virtex II, far in excess of the throughput required for SD

video processing. Can we meet our needs with less logic?

This particular problem involves duplicated logic and is

therefore well adapted to time-space folding. Time-space

folding is described theoretically in [4] and has a long his-

tory in engineering practice of circuit design (for example

[5]). This technique allows us to trade logic for a longer

computing time while memory stays the same.

The logic within the (2α + 1)2 module instances can be

folded k times so that each logic instance computes in turn

the correlation for (2α + 1)2 /k values of the displacement.

In our case the sweet spot for logic sharing seems to be the

balance between time and space unfolding.

Thus the loop over (2α + 1)2 correlations at each po-
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Fig. 6. Access to I1 and I2 for the (Cdy
)dy∈[−α,α] units

sition is evenly unrolled 2α + 1 times in space and 2α + 1
times in time.

In this design, one computation unit labeled Cdy0
com-

putes in turn the correlation values (E(dx,dy0
))dx∈[−β,β], then

the whole design moves on to the next position.

Logic sharing comes at the cost of a more complex con-

trol as we need to feed the logic with the appropriate values

from the shift-registers holding the data for I1 and I2.

Every 2α + 1 clock tick the design inputs a new pixel

into the I1 and I2 shift-registers. Then during the 2α + 1
next clock ticks, the data access window of figure 6 slides to

the right according to the value of dx. This is achieved with

moving taps in the I2 shift-register. The dual port RAMs of

the Virtex II are a perfectly suited for this task.

5. SOFTWARE IMPLEMENTATION

5.1. Implementation

The high-level description of algorithm 4 can be directly

translated into C once an appropriate software implemen-

tation of IncrCorrelation has been chosen.

Modern microprocessors are essentially sequential ma-

chines once one has exploited the instruction level paral-

lelism offered by superscalar execution units. In a sequential

machine the whole algorithm is unrolled in time, as opposed

to a parallel machine where unrolling can be performed ei-

ther in time or space as was considered earlier. Naively one
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may think that the sole parameter to optimize is the number

of instructions executed. However, the cache hierarchy has

a profound effect on instruction execution times, so much so

that it may be more efficient to repeat certain calculations

if it leads to improved cache performance. Thus a trade-

off must be made between, on the one hand, the instruction

count and, on the other, the memory usage and data locality

of the algorithm.

The algorithmic discussion of section 3 showed the var-

ious instruction count / memory tradeoffs available for the

IncrCorrelation function. Our tests clearly point to

the architecture of subsection 3.2 as the best candidate for

the software implementation. The memoized data of the ar-

chitecture 3.1 does not fit in cache; conversely the instruc-

tion count of architecture 3.3 is too big.

5.2. Performance

Based on the above considerations we focussed on a soft-

ware implementation of the algorithm of subsection 3.2.

The code was straightforwardly derived from the high-

level description and compiled with GCC 4.0. The result-

ing code achieves speeds of 1.8Mpixels/second on a 2.2GHz

Opteron core model number 275. The cachegrind [6] pro-

files showed less than 1 percent cachemiss in the inner loop.

Our reference code is available on the web [7].

Modern processors with multiple cores and SMP abil-

ities allow for coarse-grained unrolling in space – thread-

level parallelism. We threaded the code on a quad-core work-

station to reach half-realtime processing of PAL streams.

These same processing cores are actually parallel ma-

chines with multiple-issue pipelines; SIMD instructions are

ubiquitous. These features allow for low-level, processor-

dependent optimizations. Such an optimization path is pro-

mising and will be investigated in future work.

6. CONCLUSION

We have performed an in-depth analysis of the PixelMatch

pixel-level motion estimation algorithm. This work yields

an intermediate optimized algorithm description based on

logic/memory tradeoffs and loop reordering. From this in-

termediate description we show how to straightforwardly

derive efficient hardware and software implementations.

The resulting hardware is tailored for real-time process-

ing of PAL data streams by logic folding. It makes very ef-

ficient use of the logic and memory resources found on the

Virtex II FPGA. It uses minimum bandwidth, as the images

are streamed once into the design while the resulting maps

are directly streamed out of it.

The resulting software reduces the instruction count, wi-

sely uses the cache, and optimally orders the software in-

structions, yielding an efficient use of the multiple pipelines

found in modern processors to achieve maximum perfor-

mance, half-realtime on a four-way Opteron workstation.

The methodology of high-level optimizations applied to

both hardware and software can be fruitfully applied to other

streaming computations. Often video streaming computa-

tions use data local to the current pixel position and can ben-

efit from the same high-level reasoning to achieve efficient

implementation.
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